Exchange–Correlation Functionals via Local Interpolation along the Adiabatic Connection

نویسندگان

  • Stefan Vuckovic
  • Tom J. P. Irons
  • Andreas Savin
  • Andrew M. Teale
  • Paola Gori-Giorgi
چکیده

The construction of density-functional approximations is explored by modeling the adiabatic connection locally, using energy densities defined in terms of the electrostatic potential of the exchange-correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of a range of local interpolation models against accurate exchange-correlation energy densities. The importance of the strictly correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approaches based on global models, and prospects for future approximations based on the local adiabatic connection are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Densities in the Strong-Interaction Limit of Density Functional Theory.

We discuss energy densities in the strong-interaction limit of density functional theory, deriving an exact expression within the definition (gauge) of the electrostatic potential of the exchange-correlation hole. Exact results for small atoms and small model quantum dots (Hooke's atoms) are compared with available approximations defined in the same gauge. The idea of a local interpolation alon...

متن کامل

Accurate adiabatic connection curve beyond the physical interaction strength

In order to better approximate and understand the exchange-correlation functional in density functional theory, the adiabatic connection curve is accurately calculated beyond the physical interaction strength using a simulated scaling method. This is done for Hooke’s atom, two interacting electrons in a harmonic well potential. Extrapolation of the accurate curve to the infinite-coupling limit ...

متن کامل

Exchange-Correlation Energy Density from Virial Theorem

The virial of the exchange potential in density functional theory yields the exchange energy, but the virial of the correlation potential does not yield the correlation energy. Via the adiabatic connection formula, we define a hypercorrelated potential whose virial is exactly the correlation energy. This exchange-correlation energy density is uniquely determined by the exchange-correlation ener...

متن کامل

Exchange-correlation potentials and local energies per particle along nonlinear adiabatic connections

We study nonlinear adiabatic connection paths in density-functional theory using modified electron–electron interactions that perform a long-range/short-range separation of the Coulomb interaction. These adiabatic connections allow us to define short-range exchange–correlation potentials and short-range local exchange–correlation energies per particle which we have calculated accurately for the...

متن کامل

Communication: double-hybrid functionals from adiabatic-connection: the QIDH model.

A new approach stemming from the adiabatic-connection (AC) formalism is proposed to derive parameter-free double-hybrid (DH) exchange-correlation functionals. It is based on a quadratic form that models the integrand of the coupling parameter, whose components are chosen to satisfy several well-known limiting conditions. Its integration leads to DHs containing a single parameter controlling the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016